Animated Logical Graphs • 30

The duality between Entitative and Existential interpretations of logical graphs is one example of a mathematical symmetry, in this case a symmetry of order 2.  Symmetries of this and higher orders give us conceptual handles on excess complexities in the manifold of sensuous impressions, making it well worth our trouble to seek them out and grasp them where we find them.

In that vein, here’s a Rosetta Stone to give us a grounding in the relationship between boolean functions and our two readings of logical graphs.

\text{Boolean Functions on Two Variables}
\text{Boolean Function} \text{Entitative Graph} \text{Existential Graph}
f_{0} Cactus Root Cactus Stem
\text{false} \text{false} \text{false}
f_{1} Cactus (xy) Cactus (x)(y)
\text{neither}~ x ~\text{nor}~ y \lnot (x \lor y) \lnot x \land \lnot y
f_{2} Cactus (x(y)) Cactus (x)y
y ~\text{and not}~ x \lnot x \land y \lnot x \land y
f_{3} Cactus (x) Cactus (x)
\text{not}~ x \lnot x \lnot x
f_{4} Cactus ((x)y) Cactus x(y)
x ~\text{and not}~ y x \land \lnot y x \land \lnot y
f_{5} Cactus (y) Cactus (y)
\text{not}~ y \lnot y \lnot y
f_{6} Cactus ((x,y)) Cactus (x,y)
x ~\text{not equal to}~ y x \ne y x \ne y
f_{7} Cactus (x)(y) Cactus (xy)
\text{not both}~ x ~\text{and}~ y \lnot x \lor \lnot y \lnot (x \land y)
f_{8} Cactus ((x)(y)) Cactus xy
x ~\text{and}~ y x \land y x \land y
f_{9} Cactus (x,y) Cactus ((x,y))
x ~\text{equal to}~ y x = y x = y
f_{10} Cactus y Cactus y
y y y
f_{11} Cactus (x)y Cactus (x(y))
\text{if}~ x ~\text{then}~ y x \Rightarrow y x \Rightarrow y
f_{12} Cactus x Cactus x
x x x
f_{13} Cactus x(y) Cactus ((x)y)
\text{if}~ y ~\text{then}~ x x \Leftarrow y x \Leftarrow y
f_{14} Cactus xy Cactus ((x)(y))
x ~\text{or}~ y x \lor y x \lor y
f_{15} Cactus Stem Cactus Root
\text{true} \text{true} \text{true}

cc: Systems ScienceStructural ModelingOntolog ForumLaws of FormCybernetics

This entry was posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization and tagged , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

1 Response to Animated Logical Graphs • 30

  1. Pingback: Survey of Animated Logical Graphs • 2 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.