Animated Logical Graphs • 20

Another tactic I tried by way of porting operator variables into logical graphs and laws of form was to hollow out a leg of Spencer-Brown’s crosses, gnomons, markers, whatever you wish to call them, as shown below:

Transitional (q)_p = {q,(q)}

The initial idea I had in mind was the same as before, that the operator over q would be counted as absent when p evaluates to a space and present when p evaluates to a cross.

However, much in the same way that operators with a shade of negativity tend to be more generative than the purely positive brand, it turned out more useful to reverse this initial polarity of operation, letting the operator over q be counted as absent when p evaluates to a cross and present when p evaluates to a space.

So that is the convention I’ll adopt from here on.

cc: Systems ScienceStructural ModelingOntolog ForumLaws of FormCybernetics

This entry was posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization and tagged , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

1 Response to Animated Logical Graphs • 20

  1. Pingback: Survey of Animated Logical Graphs • 2 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.