## Peirce’s 1870 “Logic Of Relatives” • Comment 9.6

By way of fixing the current array of relational concepts in our minds, let us work through a sample of products from our relational multiplication table that will serve to illustrate the application of a comma relative to an absolute term, presented in both matrix and bigraph pictures.

### Example 1

$\mathbf{1,}\mathbf{1} ~=~ \mathbf{1}$

$\text{anything that is anything} ~=~ \text{anything}$

$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{bmatrix}$

### Example 2

$\mathbf{1,}\mathrm{m} ~=~ \mathrm{m}$

$\text{anything that is a man} ~=~ \text{man}$

$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix}$

### Example 3

$\mathrm{m,}\mathbf{1} ~=~ \mathrm{m}$

$\text{man that is anything} ~=~ \text{man}$

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix}$

### Example 4

$\mathrm{m,}\mathrm{n} ~=~ \text{man that is noble}$

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{bmatrix}$

### Example 5

$\mathrm{n,}\mathrm{m} ~=~ \text{noble that is a man}$

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{bmatrix}$

This entry was posted in Graph Theory, Logic, Logic of Relatives, Logical Graphs, Mathematics, Peirce, Relation Theory, Semiotics and tagged , , , , , , , . Bookmark the permalink.

### 4 Responses to Peirce’s 1870 “Logic Of Relatives” • Comment 9.6

This site uses Akismet to reduce spam. Learn how your comment data is processed.