Relations & Their Relatives : 7

Re: Peirce List DiscussionHoward Pattee

We use this or that species of diagrams to represent a fraction of the properties, hardly ever all the properties, of the objects in an object domain.  The diagrams that Peirce developed to represent propositions about relations are quite handy so long as one grasps the conventions of representation, manipulation, and interpretation.  They are not all that different in kind from Feynman interaction diagrams or Penrose twistor diagrams.  Iconicity is nice when you can get it but one has to keep in mind that the map is not the territory, as the saying goes.

What do I see in a picture like this?

         s  
        /   
  o---<L    
        \   
         i  

The ``L" brings to mind a triadic relation L, which collateral knowledge tells me is a set of triples.  What sort of triples?  The picture sets a place for them by means of the place-names ``o", ``s", ``i", in no particular order.  Without loss of generality I can take them up in the ordered triple (o, s, i).  All of this is just mnemonic machination meant to say that a typical element is (o, s, i) in L.  It’s up to me to remember that L is a subset of O \times S \times I, with o \in O, s \in S, and i \in I.  The diagram is just a mnemonic catalyst.  You have to know the codebook to decode it.

Pictures can victimize people, as Wittgenstein remarked and often exemplified.  One way people fall victim to pictures like the one depicted above is when they confuse a relation with a single one of its tuples.  That would represent a misunderstanding of what the picture is intended to represent.

Resources

Posted in Diagrammatic Reasoning, Diagrams, Logic, Logic of Relatives, Mathematics, Peirce, Peirce List, Relation Theory, Semiotics, Sign Relations, Tertium Quid, Thirdness, Triadic Relations, Triadicity | Tagged , , , , , , , , , , , , , | Leave a comment

Animated Logical Graphs : 6

Re: Peirce List DiscussionJim Willgoose

At root we are dealing with a genre of very abstract formal systems.  They have grammars that determine their well-formed expressions and rules that determine the permissible transformations among expressions, but they lack all logical meaning until we supply an interpretation.

The formal system Peirce developed for propositional logic and Spencer Brown resurrected for his Laws of Form admits a formal duality that allows it to be fleshed out with logical meanings in two distinct ways.  These interpretations are employed in Peirce’s entitative graphs and existential graphs, respectively.  It is clear from everything they write that both authors are well aware of both interpretations, but Peirce would come to found his later developments on the existential sense while Spencer Brown favored the entitative sense in his expositions.

See the following readings for further discussion:

References

Posted in Amphecks, Analogy, Animata, Automated Research Tools, Boolean Algebra, Boolean Functions, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Form, Graph Theory, Iconicity, Laws of Form, Leibniz, Logic, Logical Graphs, Mathematics, Model Theory, Peirce, Peirce's Law, Praeclarum Theorema, Pragmatism, Proof Theory, Propositional Calculus, Semiotics, Spencer Brown, Theorem Proving, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Peirce’s 1880 “Algebra Of Logic” Chapter 3 • Selection 8

Chapter 3. The Logic of Relatives (cont.)

§4. Classification of Relatives (cont.)

227.   These different classes have the following relations.  Every negative of a concurrent and every alio-relative is both an opponent and the negative of a self-relative.  Every concurrent and every negative of an alio-relative is both a self-relative and the negative of an opponent.

There is only one relative which is both a concurrent and the negative of an alio-relative;  this is ‘identical with ──’.

There is only one relative which is at once an alio-relative and the negative of a concurrent;  this is the negative of the last, namely, ‘other than ──’.

The following pairs of classes are mutually exclusive, and divide all relatives between them:

Alio-relatives and self-relatives,
Concurrents and opponents,
Negatives of alio-relatives and negatives of self-relatives,
Negatives of concurrents and negatives of opponents.

No relative can be at once either an alio-relative or the negative of a concurrent, and at the same time either a concurrent or the negative of an alio-relative.

228.   We may append to the symbol of any relative a semicolon to convert it into an alio-relative of a higher order.  Thus (l;\!) will denote a ‘lover of ── that is not ──’.

References

  • Peirce, C.S. (1880), “On the Algebra of Logic”, American Journal of Mathematics 3, 15–57.  Collected Papers (CP 3.154–251), Chronological Edition (CE 4, 163–209).
  • Peirce, C.S., Collected Papers of Charles Sanders Peirce, vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), vols. 7–8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA, 1931–1935, 1958.  Volume 3 : Exact Logic, 1933.
  • Peirce, C.S., Writings of Charles S. Peirce : A Chronological Edition, Peirce Edition Project (eds.), Indiana University Press, Bloomington and Indianapolis, IN, 1981–.  Volume 4 (1879–1884), 1986.

Resources

Posted in Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Sign Relations, Triadic Relations | Tagged , , , , , , , | Leave a comment

Scientific Attitude : 1

There is an outlook on the world that I call the Scientific Attitude (SA).  There are times when the “A” is better served by apperception, approach, or attunement, but attitude will do for a start.

The scientific attitude accepts appearances, as appearances, but it does not stop there — it inquires after the possible realities that would both save and solve the appearances.

Reality is what persists and the scientific attitude accepts its limitation to what persists.  Thisness and thatness may come and go, but scientific knowledge rests on results that are reproducible.  It is knowledge of particulars in general terms.

Posted in Epistemology, Generality, Haecceity, Inquiry, Inquiry Into Inquiry, Knowledge, Logic, Logic of Science, Philosophy, Philosophy of Science, Reproducibility, Science, Scientific Attitude, Scientific Method | Tagged , , , , , , , , , , , , , | Leave a comment

Relations & Their Relatives : 6

Re: Peirce List DiscussionEdwina TaborskyHoward Pattee

In the best mathematical terms, a triadic relation is a cartesian product of three sets together with a specified subset of that cartesian product.

Alternatively, one may think of a triadic relation as a set of 3-tuples contained in a specified cartesian product.

It is important to recognize that sets have formal properties that their elements do not.  The greatest number of category mistakes that bedevil errant discussions of relations and especially triadic sign relations arise from a failure to grasp this fact.

For example, the irreducibility (or indecomposability) of triadic relations is a property of sets-of-triples, not of individual triples.

See the articles under the following heading for concrete examples and further discussion:

Additional Resources

Posted in Logic, Logic of Relatives, Mathematics, Peirce, Peirce List, Relation Theory, Semiotics, Sign Relations, Tertium Quid, Thirdness, Triadic Relations, Triadicity | Tagged , , , , , , , , , , , | Leave a comment

Relations & Their Relatives : 5

Re: Helmut Raulien

In systems theory and engineering there is a well-recognized duality or complementarity between the dimensions of Control and Information, frequently cast in terms of action and perception, actuators and detectors, effectors and sensors, and a variety of other aliases.  There we find the dual devices of reachability matrices, representing the operations it takes to put a system in a given state, and observability matrices, representing the operations it takes to identify a system as being in a given state.

The appearance of matrices at this point, understood in the sense of 2-dimensional arrays of coefficients, may clue us to the mainly dyadic character of the analysis and design that issue from them.  And yet there is every opportunity in systems theory and engineering to open up the additional “elbow room” that triadic relations provide.

Resources

Posted in Control Theory, Cybernetics, Denotation, Information Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Sign Relations, Systems Theory, Triadic Relations | Tagged , , , , , , , , , , , , | 1 Comment

Peirce’s 1880 “Algebra Of Logic” Chapter 3 • Selection 7

Chapter 3. The Logic of Relatives (cont.)

§4. Classification of Relatives

225.   Individual relatives are of one or other of the two forms

\begin{array}{lll}  \mathrm{A : A} & \qquad & \mathrm{A : B},  \end{array}

and simple relatives are negatives of one or other of these two forms.

226.   The forms of general relatives are of infinite variety, but the following may be particularly noticed.

Relatives may be divided into those all whose individual aggregants are of the form \mathrm{A : A} and those which contain individuals of the form \mathrm{A : B}.  The former may be called concurrents, the latter opponents.

Concurrents express a mere agreement among objects.  Such, for instance, is the relative ‘man that is ──’, and a similar relative may be formed from any term of singular reference.  We may denote such a relative by the symbol for the term of singular reference with a comma after it;  thus (m,\!) will denote ‘man that is ──’ if (m) denotes ‘man’.  In the same way a comma affixed to an n-fold relative will convert it into an (n + 1)-fold relative.  Thus,  (l) being ‘lover of ──’,  (l,\!) will be ‘lover that is ── of ──’.

The negative of a concurrent relative will be one each of whose simple components is of the form \mathrm{\overline{A : A}}, and the negative of an opponent relative will be one which has components of the form \mathrm{\overline{A : B}}.

We may also divide relatives into those which contain individual aggregants of the form \mathrm{A : A} and those which contain only aggregants of the form \mathrm{A : B}.  The former may be called self-relatives, the latter alio-relatives.  We also have negatives of self-relatives and negatives of alio-relatives.

References

  • Peirce, C.S. (1880), “On the Algebra of Logic”, American Journal of Mathematics 3, 15–57.  Collected Papers (CP 3.154–251), Chronological Edition (CE 4, 163–209).
  • Peirce, C.S., Collected Papers of Charles Sanders Peirce, vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), vols. 7–8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA, 1931–1935, 1958.  Volume 3 : Exact Logic, 1933.
  • Peirce, C.S., Writings of Charles S. Peirce : A Chronological Edition, Peirce Edition Project (eds.), Indiana University Press, Bloomington and Indianapolis, IN, 1981–.  Volume 4 (1879–1884), 1986.

Resources

Posted in Dyadic Relations, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Sign Relations, Triadic Relations | Tagged , , , , , , , , | 1 Comment