Re: Dick Lipton & Ken Regan • (1) • (2)
Putting all thought of the Frankl Conjecture out of our minds for the moment, let’s return to the proposition in Example 1 and work through its differential analysis from scratch.
Example 1

(1) 
Consider the proposition in boolean terms the function such that as illustrated by the venn diagram in Figure 1.
The enlargement of is the boolean function defined by the following equation:
Given that is the boolean product of its three arguments, may be written as follows:
Difficulties of notation in differential logic are greatly eased by introducing the family of minimal negation operators on finite numbers of boolean variables. For our immediate purposes we need only the minimal negation operators on one and two variables.
 The minimal negation operator on one variable is notated with monospace parentheses as and is simply another notation for the logical negation
 The minimal negation operator on two variables is notated with monospace parentheses as and is simply another notation for the exclusive disjunction
In this notation the previous expression for takes the following form:
A canonical form for may be derived by means of a boolean expansion, in effect, a case analysis that evaluates at each triple of values for the base variables and forms the disjunction of the partial evaluations. Each term of the boolean expansion corresponds to a cell of the venn diagram and is formed by multiplying the value of that cell by a coefficient that amounts to the value of on that cell.
For example, in the case where all three base variables are true, the corresponding coefficient is computed as follows:
Collecting the cases yields the boolean expansion of via the following computation:
Step 1
Step 2
To be continued …